

Search for the Δ^{++} from pp \rightarrow n (p π^{+}) process

Michael Longo, Turgun Nigmanov, Durga Rajaram University of Michigan

MIPP analysis meeting, July 26, 2006

Search for the Δ^{++} from p + p \rightarrow n + (p+ π^{+}) process

- Momentum 20, 35 and 58 GeV/c
- Target: LH2, Carbon 2\%, Bismuth and Uranium
- Trigger: proton beam and proton interactions
- Kinematic cuts:

$$-p_p > 2.5 \cdot p_{\pi}$$
,

$$-(p_p + p_\pi) > 0.8 \cdot p_{beam}$$

- Event/track selection cuts:
 - select clean events, nTrks<10
 - select two track vertices
 - the vertex should be within the target sizes
 - require the good quality tracks in the vertex: reasonable nTPC hits, timing and $p_{tot} > 0.2 \text{ GeV/c}$
 - reject track if RICH identified it as a e/K track: 0<mass<0.075 GeV or 0.2<mass<0.7 GeV
 - apply a pion hypothesis for the track if RICH identified it as a pion, $p_{tot} > 5$ GeV/c

Experimental cross section for reaction pp \to np π^+ as a function of beam momentum. The solid line is a fit result: $\sigma=45.9|P_{lab}|^{-1.06}$ mb. E.Colton et al, Phys.Rev.D v.7 (1978) 3267

Turgun Nigmanov, University of Michigan.

The RICH detector info associated with the selected tracks: the mass vs momentum scatter plot (on left) and mass distribution on right plot. Plots indicates that the RICH detector identified the tracks: as e^{\pm} if mass<0.075 GeV, as a pion if 0.075<mass<0.2 GeV and as a kaon if 0.2<mass<0.7 GeV. The proton with p_{tot} <20 GeV/c is below of the RICH threshold.

The momentum distributions of pair tracks passed all selection cuts: left plot - the low momentum track, right plot - high momentum track. Vertices with the pair of positively charged tracks were selected.

Based on kinematics the low momentum track is a pion, high momentum - a proton.

20 GeV/c protons on LH2 target data

Turgun Nigmanov, University of Michigan.

Top - the invariant mass distributions of pair positively charged tracks from the two track vertices.

Middle - deposited energy into HCAL with additional selection cuts: a)the mass of $p\pi$ system should be within 1.1 - 1.4 GeV region and b)no any charged tracks pointing to the calorimeter area.

Bottom - the vertex Z position distributions of the multi-track vertices.

20 GeV/c protons on Carbon target data

Top - the invariant mass distributions of pair positively charged tracks from the two track vertices.

Middle - deposited energy into HCAL with additional selection cuts: a)the mass of $p\pi$ system should be within 1.1 - 1.4 GeV region and b)no any charged tracks pointing to the calorimeter area.

Bottom - the vertex Z position distributions of the multi-track vertices.

35 GeV/c protons on Bismuth target data

Top - the invariant mass distributions of pair positively charged tracks from the two track vertices.

Middle - deposited energy into HCAL with additional selection cuts: a)the mass of $p\pi$ system should be within 1.1 - 1.4 GeV region and b)no any charged tracks pointing to the calorimeter area.

Bottom - the vertex Z position distributions of the multi-track vertices. Target-OUT peak position looks strange. See details on next page.

more about Bismuth target data (35 GeV/c)

Left plots - target-IN, right plots - target-OUT.

More trigger counter plots are several pages below

Turgun Nigmanov, University of Michigan.

- the vertex Z position distributions of the multi-track vertices. Red plots run<13000, blue - run>13000. Peak at z=-827cm represents interactions with the trigger counter. Peak on red target-IN plot at z=-829cm represents interactions with Bismuth target. Why we not see it on blue plot? Because the trigger counter do not work properly at this time.

Another note - Z target position at DB:

Run12721 tgtPos=(-0.109,-0.173, -825.4?)

Run14076 tgtPos=(-0.109,-0.173,-829)

DB suggests that Z for empty target is -825.4cm which is downstream of the trigger counter. It can not be true.

Bottom - the trigger counter ADC distributions. Plots illustrates that the target-IN data were taken when the counter has readings below of the pedestal

58 GeV/c protons on LH2 target data

Top - the invariant mass distributions of pair positively charged tracks from the two track vertices.

Middle - deposited energy into HCAL with additional selection cuts: a)the mass of $p\pi$ system should be within 1.1 - 1.4 GeV region and b)no any charged tracks pointing to the calorimeter area.

Bottom - the vertex Z position distributions of the multi-track vertices.

59 GeV/c protons on Uranium target data

Top - the invariant mass distributions of pair positively charged tracks from the two track vertices.

Middle - deposited energy into HCAL with additional selection cuts: a)the mass of $p\pi$ system should be within 1.1 - 1.4 GeV region and b)no any charged tracks pointing to the calorimeter area.

Bottom - the vertex Z position distributions of the multi-track vertices.

cross-check

As a cross-check the analysis codes have been tested by reconstructing the Monte Carlo $\Lambda \to p\pi$ decays. MC generation made by Durga. The number of generated Λ 's: 20K. Reminder: Λ 's branching fraction with charged decay modes is 0.62, neutrals - 0.36. The fraction of the single charged tracks found: 0.24. The fraction of the two track events is 0.22. Other events - 0.01. The position and width of the peak suggests that MC TPC detector simulation and B field are in good shape.

	LH2 + Sci	Empty Cryo + Sci	Carbon + Sci	Sci
proton beam triggers	33713	6969	14243	6506
incident protons (scaled using prescale)	5120519	843249	1438543	496286
beam trigger candidates	9	3	6	4
scaled beam candidates	2187	363	606	304
interaction trigger candidates	155	11	128	17
scaled interaction candidates	510	33	128	17
total candidates	2697	396	734	321
Δ^{++} yield (x 10 $^{-4}$)	5.27±0.41	4.70±1.26	5.10±0.44	6.47±1.41

Table 1: Yield of the Δ^{++} candidates with 20 GeV/c proton beam on LH2 and Carbon 2% targets.

	LH2 + Sci	Empty Cryo + Sci	Uranium + Sci	Sci
proton beam triggers	21537	6463	38613	19642
incident protons (scaled using prescale)	74549887	32308413	60854088	23541880
beam trigger candidates	0	1	0	0
scaled beam candidates	0	3201(?)	0	0
interaction trigger candidates	7	4	5	5
scaled interaction candidates	168	96	55	94
total candidates	168	3297	55	94
Δ^{++} yield (x 10 $^{-4}$)	0.023±0.009	unclear	0.009±0.004	0.040±0.018

Table 2: Yield of the Δ^{++} candidates with 58 GeV/c proton beam on LH2 and Uranium targets.

Summary for pp ightarrow np π^+ studies

- ullet the Δ^{++} peak clearly visible with 20 GeV/c protons. Outgoing neutrons are off from the HCAL aperture. Overall statistics is poor for the publication purpose.
- data with 35 GeV/c beam can not be used due to of lack the trigger counter performance.
- ullet best momentum for Δ^{++} studies is a few GeV/c, but we do not have incident protons on this range.
- Expected cross section at 20 GeV/c is about 2 mb, at 60 GeV/c it is much less than 1 mb. That why we do not see the Δ^{++} peak at 60 GeV/c.

The trigger counter studies.

Motivation?

By using the trigger counter try to reduce the unreconstructed straight through tracks which is a major source of the background for the forward neutrons from the elastic p+n→n+p reaction and for the inclusive neutron production.

single track (vtx→ntrk == 1): what is a pulse height?

Top plot - the trigger counter's pulse height distribution on the 20 GeV/c hadrons. Bottom plot - the pulse height distribution on the 35 GeV/c hadrons.

Events with sciADC<35 are mostly from runs < 12163.

muons and electrons: what is a pulse height?

Left plot - the scintillator pulse height distribution on the 4.7 GeV/c muons. Right plot - using 20 GeV/c electrons.

vtx→ntrk<1: what is a pulse height?

Data: 20 GeV/c and 35 GeV/c π^{\pm} , K $^{\pm}$ and protons (in order to have more statistics). nOutTrks: no any reconstructed tracks in TPC within ± 3 cm around the beam line (except if failed to reconstruct). Target-IN: Al, Be, Bi and C. Top plot - the scintillator pulse height distribution with Target-IN case. Bottom plot - Target-OUT data. Peak at 50 is a pedestal.

Counts within 100 - 1100 range represents the unreconstructed straight through track events.

soft tracks, p_{tot} <1 GeV/c: what is a pulse height?

Data: 20 GeV/c and 35 GeV/c π^{\pm} , K $^{\pm}$ and protons (in order to have more statistics). Selection: look for the single soft track events with p_{tot} <1 GeV/c. Target-IN: Al,Be,Bi and C. Left plot - the scintillator pulse height distribution with Target-IN case. Right plot - Target-OUT data.

Interpretation: data with sciADC<100 represents the nOutTrks = 0 cases. Events within 150-1000 are the unreconstructed high momentum tracks due to of reco failures. But the scintillator seeing them. Overflow events (sciADC>1100) represents the pulse height for the single soft tracks.

Summary for the trigger counter studies

- the pedestal is about 50 counts. On early runs (<12613) ADC readings are below of the pedestal: sciADC=0 or <35 for the good single tracks going through. It is effecting mostly to 35 GeV/c data with the thin targets. Electronics failure?
- suggestion do not use data if the readings are below pedestal
- pedestal means there is no charged tracks within the counter acceptance
- the minimum ionizing peak is at 220 counts, the width about 20 counts. The MIP position is consistent with a muon and an electron data.
- overflow single soft track and/or multi-track cases